Selection Between Conditional and Unconditional Models of Recreation Demand

Jeffrey Englin Juan Marcos González-Sepúlveda

Overview

- Discuss basic issues between conditional and unconditional models
- Present the models to be examined
- Discuss methods of distinguishing models
- Present the results
 - Conclusions

Basic Issues

- Vastly different underlying assumptions
 Linear indirect utility v.s. linear exponential demand
- Both are widely employed
- Problems with econometric tests to differentiate them
 - Non-nested tests only differentiate data to model fit
 not the theoretical acceptability of underlying modelling assumptions

What to do?

- Early work (Diamond, Feather and Parsons) tried to link conditional and unconditional models
 - Proven wrong (Shonkwiler and Shaw and others)
- Specialized analyses can easily choose amongst the models when designed a survey and collecting primary data

In other situations what are the tradeoffs?

• How can one measure the tradeoffs quantitatively?

What to do indeed!

- Grab some data
- Pick some models
 - Random Utility Models
 - Conditional logit
 - Multinomial Dirichlet RUM
 - Pooled Count Demand Models
 - Poisson
 - negative binomial

Conditional Models

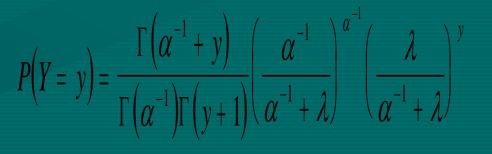
- Random Utility Modeling
- Generally assumes linear indirect utility
- Conditional models take the intensity of use by an individual as given no need for individual characteristics (intensive margin)
- Provides efficiency gains in econometric analysis from conditioning on individuals
- While increasing quality may draw "new" participants there is no way to predict who they may be (extensive margin)
- Powerful if the presumption is that the world is getting worse problematic if new participants may come

Random Utility Models

- Conditional modeling strategy
- Econometric efficiency is maximized
- Multinomial Dirichlet newer model with more flexibility
- Others could be used (MNL for one)

$$P(Y_{J} = y_{j}|y) = \frac{y!}{y_{1}!y_{2}!..y_{J}!} \pi_{1}^{y_{1}} \pi_{2}^{y_{2}} ... \pi_{J}^{y_{J}}$$

$$p(y|\alpha,\theta,\mathbf{Y}) = \frac{\mathbf{Y}!\Gamma(\alpha)/\Gamma(\mathbf{Y}+\alpha)}{\prod\left\{y_{j}!\Gamma(\alpha\theta_{j})\right\}}\prod\Gamma\left(y_{i}+\alpha\theta_{j}\right)$$


Unconditional models

- Demand based models Typically count models
- Models assume linear exponential demand
- Models predict increases or decreases in demand
- Requires information on individual characteristics no efficiency gains from conditioning on individuals
- Good at predicting welfare changes from increasing or decreasing quality (either intensive or extensive margins)
- Suitable for a range of possible policy scenarios

Count Models

- Treat individual trips as integers
- Non-negative distributions
- Quite popular
- Well suited to commonly obtainable public data
- Use Poisson and Negative Binomial

Data

- Backcountry hiking permit data in the Paysaten Wilderness
- Paysaten Wilderness has twenty four trails
- Ecosystems mapped onto trails
- Other site characteristics added

- Distance calculated based on postal code to trailhead
- Demographics at the postal code level

US Map

Washington

Paysaten Wilderness

Paysaten Wilderness

Paysaten Wilderness

Data to Question Fit

- Data is anonymous only home postal code is reported
- Models are estimated on a representative individual from a postal code
- Demographic information is taken from the US National Census – the average person
- Good fit to the question because this is the kind of situation where the trade-offs between econometric efficiency and transferability of the functions is an important decision

Methodology

- First, fit the four models
- Examine traditional measures of model adequacy
- Examine the differences in welfare measures across the site characteristics

Table 1. Leonometric 1 arameter Results										
	Conditional		Multinomial		Poisson		Negative			
	Logit		Dirichlet				Binomial			
Model Attributes										
Constant					-23.7721	***	-35.4542	***		
					3.4224		6.3569			
Travel Distance	-0.055	***	-0.0489	***	-0.06	*	-0.01			
	(0.0134)		0.0103		0.03		0.02			
<u>Forest Ecosystems</u>										
Douglas Fir	-0.1387	**	-0.1334	***	-0.0661		-0.0927	*		
	0.0648		0.0442		0.0545		0.0551			
Englman Spruce	0.1203	***	0.1094	**	0.1014	***	0.1295	**		
	0.0557		0.0464		0.0648		0.0525			
Hemlock	0.0001		0.0003		-0.0003		-0.0003			
	0.0002		0.0002		0.0002		0.0002			
Lodgepole	0.0001		0.0002		0.0001		0			
0.	0.0001		0.0001		0.0001		0.0001			
Silver Fir	0.1094		0.1328		-0.1069		0.0203			
	0.1651		0.1312		0.1447		0.1262			
Other Site Attributes										
Horse Facilties	1.1286	***	1.2677	***	0.649	***	0.8675	***		
	0.3334		0.2305		0.1954		0.2367			
Rock and Ice	-0.0021	***	-0.0015	***	-0.0019	***	-0.0023	***		
	0.0008		0.0006		0.0007		0.0007			
Dirt Roads		**	0.067	***	0.0529	**	0.0545	**		
	0.0241		0.0191		0.0236		0.0222			
Demographic Variabl										
Income					0		0			
					0		0			
Gender					0.4105	***	0.6026	***		
					0.0681		0.1202			
Age					-0.009		-0.0199			
3.					0.015		0.0203			
Education					0.1407		0.2822	*		
					0.0897		0.1587			
Log(population)					-0.1461	***	-0.0261			
					0.1382		0.0335			
Alpha			0.886	***	0001		0.0000			
			0.1651							
Overdispersion			011001				23.6442	***		
Parameter							2.3108			
Log Likelihood	-1649.1976		-815.45265		-2031.85		-1126.81			
Log Litterinood	10101070		010.40200		2001.00		1120.01			

Table 1. Econometric Parameter Results

Welfare Calculations

• RUM

– Uses standard per unit welfare calculations by trail

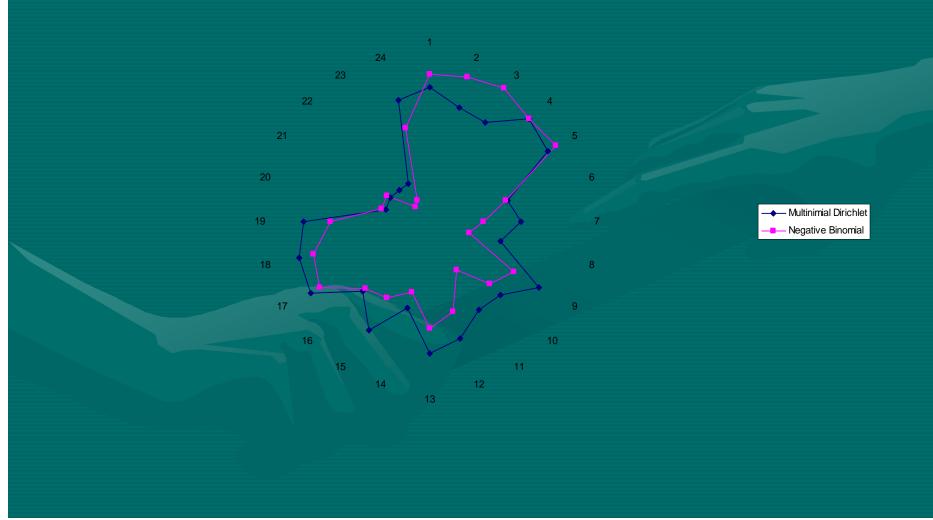
Count Demand

 Based on choosing a trail and increasing the quantity of an attribute by one unit and assessing the change in consumer surplus that results from the change in trips

Average Welfare Measures by Modelling Strategy across 24 trails

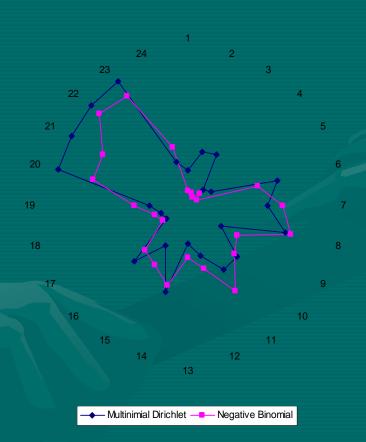
	Conditional Logit	Multinomial Dirichlet	Poisson	Negative Binomial
Douglas Fir	-\$6.76	-\$8.94	-\$14.30	-\$10.82
Dirt Road	\$3.01	\$4.96	\$12.14	\$6.84
Englemann Spruce	\$6.67	\$8.27	\$23.88	\$16.89
Hemlock	\$0.01	\$0.02	-\$0.07	-\$0.04
Lodgepole	\$0.00	\$0.01	\$0.01	\$0.00
Silver Fir	\$6.03	\$10.16	-\$22.67	\$2.51
Rock/Ice	-\$0.11	-\$0.11	-\$0.42	-\$0.28
Horse Facility	\$109.18	\$182.64	\$204.30	\$168.76

Some Preliminaries


- Trails 1, 2, 3, and 4 receive almost no visitors because you must either take a boat to the trailhead or take a long trek outside the park to get there
- Trails 6 through 10 and 20 through 23 are popular

"Consistent fits"

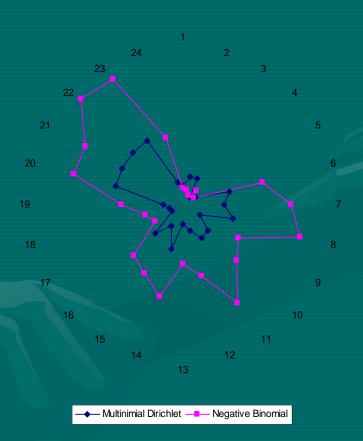
- Trail attributes that are zero-one or small amounts **OR** parameters are small
- No major differences between modeling strategies


Douglas Fir

Marginal Value of Douglas Fir

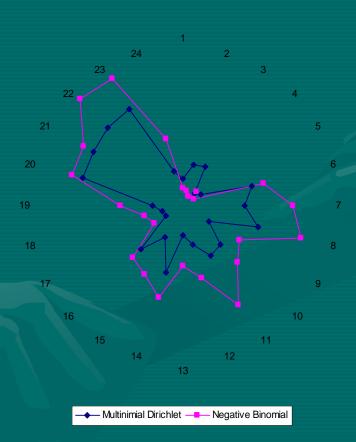
Horse Facilities

Marginal Value of Adding Horse Facilities



Count Models Welfare Large

- Trail attributes that have large quantities **OR** large parameters
- Linear exponential demand causes large shifts in demand in response to small changes in quantity


Englemann Spruce

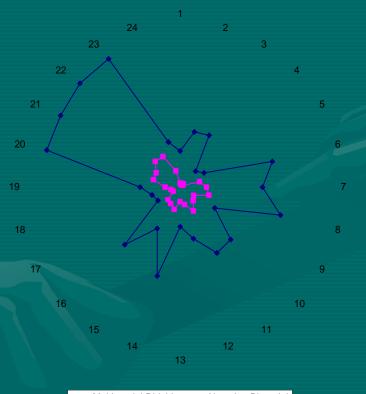
Marginal Value of Englemann Spruce

Dirt Roads

Marginal Value of a Mile of Dirt Road

RUM Models generate large welfare

- Trail attributes with small quantities OR small parameters
- Linear utility expands these effects beyond what a non-linear (concave) function will estimate


Rock and Ice Fields

Negative Marginal Value of Rock and Ice

Lodgepole

Marginal Value of Lodgepole

What's going on?

- In the demand framework the change in marginal value is driven by change in trips
 - Since the functional form of demand is trips=exp(xb) the impact of a one unit increase in x_i depends on the value of all other x's
- In the RUM the change in marginal value is independent of trips
- The welfare from demand models is systematically different from RUM models ceteris paribas

More about what's going on

- Curvature matters when the base and/or the delta (parameter*marginal increase in attribute) is high
 - Affects both RUM and linear exponential demand
 - Systematic study would put "bounds" on welfare measures

Conclusion

- The underlying assumptions of these models drives the relative welfare results in predictable ways
- Causes me to think a little more about such things during survey design in my choice experiments and other studies
- No particularly good way to choose
- It is only one study, but we can learn more.....